Elasticity of hydrosphere and its contribution to the sustainable management of water resources

R. Vedom

Hydrology and Environment

905 823 6088

www.hydrology.ca

60th Annual Conference of CWRA,

Saskatoon, June 26-28, 2007

Presentation outline

- Elasticity of hydrosphere: illustration and interpretation in terms of climate and water resources variations
- Tools for assessment: the SimpleBase Delineation Model and the Separated Flux Analysis (SFA)
- Used databases and the idea supporting results: "operation charts" of hydrosphere
- Use for sustainable Water Management

Elasticity of hydrosphere

Why elasticity? Why not viscosity or density?

Elasticity is about limits. We need to know limits of water consumption and use.

We need to know natural limits of all structural elements fluctuation in entire hydrosphere

 Elasticity of hydrosphere is an ability or function of hydrosphere to control life-sustaining local and global thermoregimes maintaining certain long-term composition of water phases within it.

Iterative nature of weather parameter fluctuations comes from their diversity and Earth rotation

The SimpleBase Delineation ModelTM

Databases used

Hydrometeorological Survey of Estonia:

Kasary wtshd: 4 subwatersheds, 1 temperature, 6 precipitation stations

Tooma Bog station: complex water and radiation balance station providing standard hydrometeorological, hydrogeological and hydrophysical daily data

Environment Canada: 60 watersheds and 40 climate stations from 6 Canadian provinces and territories (British Columbia, Yukon, Nunavut, Ontario, Nova Scotia and Newfoundland) for the 1995-2000 periods;

38 natural stream stations of S. Ontario

4 stations of hourly data for 1953, 2006 and 1995-2000

Fletcher's Creek daily data of the surface and groundwater quality: March – July 2005

Daily dynamic limits and frequencies of hydro-meteo parameters in ascending order, Tooma Bog Station (Estonia), 1984-90

Parameter/Object	Daily limit	Freq uency	Sensor location	Parameter/Object	Daily limit	Freq uency	Sensor location
Linnusaare Cr., L/s	1.95	12	Lake-ridge, pine-hollow mire surface	226 (pool), cm	0.84	30	surface
Snow (Pine-hollow Indscp), cm	0.99	12	surface	1052b, cm	0.90	33	26 m depth, Tooma 4 wtshd
Snow (Pine-shroub Indscp), cm	0.99	13	surface	214 (pool), cm	0.91	33	Surface, Linnussaare wtshd
Snow (Forest ldscp)	0.99	13	surface	323, cm	0.96	33	2 m depth, Tooma 4 wtshd
Snow (Lake-ridge lndsc), cm	0.99	13	surface	1052, cm	0.94	39	255 m depth at Tooma 4 wtshd
Tooma 6 Ch., L/s	0.036	15	Mineral surface	1052a, cm	0.94	39	145 m depth at Tooma 4 wtshd
Snow (Mineral soil)	0.99	15	surface	Air Temperature	0.99	55	2 m above surface (mineral soil)
Koluvere Cr., L/s	0.815	17	All variaty of landscapes	Water Pressure, mm	0.49	62	2 m above surface (mineral soil)
Tooma 5 Ch., L/s	0.149	19	Pine-hollow, pine-shrub, lake-ridge landscapes	Soil Temperature, °C	0.94	63	surface (mineral soil)
Tooma 4 Ch. L/s	0.064	20	Pine-hollow landscape	Radiation, cal/m2	43	64	2 m above surface
1052d, cm	0.98	20	2 m depth at Tooma 4 wtshd	Cloud, balls	0.99	71	surface
218, cm	0.97	24	2 m depth, Tooma 5 wtshd	Precipitation, mm	0.49	73	0-2 m above surface
225, cm	0.96	28	2 m depth,	Sun shine, hour	1.29	73	surface (mineral soil)
1052c, cm	0.87	29	8 m depth at Tooma 4 wtshd	Wind, m/s	0.47	78	15 m above surface

Inter/storm component separation: the Separated Flux Analysis (SFA, part 2)

Semi-annual (March – October, November- February) correlation of meteo-elements and groundwater levels with temperature (SFA, part 3)

Seasonality of atmospheric parameters relationships with temperature, 1984 - 90

Defining of top priority parameters for catchments: SFA, part 4

Linnussaare catchment (peat pillow), 1.8 km2

Tooma 6 catchment (mineral soil), 0.035 km2

Average corre lation coef.	Parameter	Absolute average coef.	Parameter	Average corre lation coef.	Parameter	Absolute average coef.	Parameter
0.28	Lin_I	0.54	1052b_B	0.12	Snow_T, cm	0.49	S/temp_B, °C
0.28	Lin_T	0.54	1052b_I	0.12	Snow_I, cm	0.49	S/temp_I, °C
0.28	1052c_I	0.54	1052b_T	0.12	1052a_T	0.49	Temp_B, °C
0.27	1052c_T	0.54	226_B	0.12	Snow_B, cm	0.49	S/temp_T, °C
0.27	Lin_B	0.53	214_B	0.12	1052a_I	0.48	Temp_I, °C
0.27	1052c_B	0.53	226_I	0.11	1052b_T	0.48	Temper_T
0.27	226_T	0.53	226_T	0.11	1052b_I	0.47	e_B, mm
0.27	226_I	0.53	214_I	0.11	1052a_B	0.47	e_I, mm
0.27	226_B	0.53	214_T	0.11	1052b_B	0.46	e, mm
0.27	1052b_T	0.51	225_В	0.11	1052c_B	0.43	Snow_I, cm
0.27	1052b_I	0.51	225_I	0.10	1052c_I	0.43	Snow_T, cm
0.27	1052a_T	0.51	225_T	0.10	1052c_T	0.43	Snow_B, cm
0.27	1052a_I	0.49	1052c_B	0.10	T6_I	0.42	Radiation_I, °C
0.26	1052b_B	0.49	1052a_I	0.10	Wind_I, °C	0.42	Radiation,
0.26	225_B	0.49	1052a_T	0.10	Wind, m/s	0.42	Radiation_B,
0.26	225_I	0.48	1052a_B	0.09	T6_T	0.37	1052b_B
0.26	225_T	0.48	1052c_I	0.09	Wind_B, °C	0.37	1052b_I
0.26	1052a_B	0.47	e_B, mm	0.09	T6_B	0.37	1052b_T
0.24	214_T	0.46	1052c_T	0.09	1052d_T	0.35	Sun_H_I, h
0.24	214_I	0.46	Temp_I, °C	0.09	1052d_I	0.35	Sun_H_B, h

Precipitation structure change against watershed area and station location: Kasari R. watershed and subwatersheds (1981-90)

Precipitation inter and extreme shares against Ki estimated by temperature (Kasari R., 2040 km2, 1981-90) 0.80and extreme shares against Ki perature Nt (Teenuse R., 650 km2) Precipitation inter and extreme shares against Ki estimated by temperature Nt (Veli Precipitation inter and extreme shares against Ki 0.80 estimated by temperature Nt (Valgu R., 135 km2), 1981-90 0.70 Structure of precipitation for single stations (blue dots) vears and watersheds' summaries against Ki 0.60 70.00 0.50 $t = 6.5297 x^2$ - 27.918x + 80.379 60.00 0.40 $R^2 = 0.7926$ 50.00 6.0345x + 59.5 0.30 $R^2 = 0.2874$ Swampy surfaces with y = 14.737x - 5.552640.00 -0.20 $R^2 = 0$ 63 wetland vegetation = 12,414 + 9 30.00 0.10 $R^2 = 0.8594$ y = -6.3793x + 3.5 $R^2 = 0.6294$ 20.00 0.00 $y = -9.2906x^{2} + 21.47x + 8.1428$ Headwater area with 10.00 $R^2 = 0.9016$ regular vegetation 2 2.5 0.00 -1.30 1.90 0.90 1.10 1.50 1.70 2.10

Precipitation structure for some areas of Canada, 1995-2000

"Operation graph" of the continental hydrosphere: Canada total, 1995-2000

Structure of precipuitation against Ki providing Nr = Nt

Precipitation: Toronto -Iqualuit

Structure of precipitation against Ki and time, Iqualuit, 1946-2006

Resolutions comparison Toronto Airport, 2006

Daily resolution

Parameter	Qb	units	N	N/month
Temperature, °C	1.09	grad/day	59	5
Stn Press (kPa)	0.19	kPa/day	59	5
Visibility (km)	2.49	km/day	59	5
Wind Dir (10's deg)	1.50	10's deg/ day	69	6
Rel Hum (%)	4.86	%/day	71	6
Precipitation	0.19	mm/day	75	6
Wind Spd (km/h)	0.51	m/s/day	80	7
AQI	1.70	units/day	83	

Qualitative parameters have higher frequencies than quantitative ones

Hourly resolution

Parameter	dQ	units	Ν	N/day
Stn Press (kPa)	0.019	kPa/hour	447	1
Visibility (km)	1.59	km/hour	506	1
Temperature (°C)	0.29	°C/hour	610	2
Rel Hum (%)	1.99	%/hour	877	2
Wind Dir (10's deg)	1.99	10'sdeg/hour	1217	3
Wind Spd m/s	0.55	m/s/hour	1803	5

Changing of resolution reveals

- •Different roles of parameters at different scales
- •Higher resolutions require higher sensitivity of measurement tools

•Sensitivity threshold for precipitation (traces) can be estimated using SFA part 2

Hourly limits dT and frequencies Nt of temperature in 1953 and 2006

Controversial semi-annual correlation between different flow components and temperature

SFA, part 3: feedback functionality

Omineka R., BC, 5470 km2					Harris R., NF, 640 km2										
-							Ranged average F					Ranged ABS average			
Rang	ed ave	rage	Ran	Ranged ABS average			0.29	To	tal				Fotal		
0.35	Total		0.42	Tota	1		0.20				0.20		(
0.32	Inter		0.41	Base	e		0.29	P_(otal, mi	n	0.29		P_total, mm		
0.31	Base		0.40	B_T	emperature, °C		0.27	P_1	Tur	n kev R '	$\mathbf{D} = \frac{1028 \mathrm{D}}{1000} \mathrm{D}$			m	
0.30	The	lon R NU	65 6	500 li	m?	•	0.25	Int	1 ui	ксу к.,					
0.20	ТПС		, 0.5 (XIII2		0.24	P_9	Rang	ed averag	e		Rang	ed ABS ave	erage
0.29	Rang	ed average		ed ABS average	e	0.22	Sto	0.41	Total			0.41	Total		
0.27	0.37	T_Temperature	¢, °C	0.43	B_Temperature, °C		0.18	P_1	0.38	P_total, mm			0.38	P_total, mm	
0.26	0.35	B_Temperature	e, °C	0.40	0.40 T_Temperature, °C		0.18	T_'	0.36	P_storm,mm			0.36	P_storm,mm	
0.24	0.34	Total		0.38	Base		0.16	Ba	0.36	Inter			0.36	Inter	
0.24	0.32	P_total, mm		0.38	Total		0.16	S_1	0.36	P_inter, mm			0.36	P_inter, mm	
0.23	0.29	Base		0.36	P_total, mm		0.16	I_7	0.35	Storm			0.35	Storm	
0.02	0.29	P_inter, mm		0.32	P_inter, mm		0.12	B_	0.33	P_base, mm			0.34	P_base, mm	
0.00	0.29	Inter		0.32	Inter				0.20	Base			0.22	Base	
	0.27	P_storm,mm		0.30	P_storm,mm	P_storm,mm			0.20	T_Temperature, °C		C	0.21	B_Temperature, °C	
	0.23	P_base, mm		0.27	P_base, mm				0.18	I_Temperature, °C			0.21	T_Temperature, °C	
	0.23	Storm		0.24	Storm		0.15 S_Tempera		ature, °C	e, °C 0.20 I_Tempe		I_Temperat	ure, °C		
	0.02	I_Temperature,	°C	0.23	S_Temperature, °	С			0.15	B_Temper	B_Temperature, °C		0.18	S_Temperature, °C	
	0.02	S_Temperature	, °C	0.23	I_Temperature, °C		I		Н\	/drolo		and F	Environm	ent ©	

i iyululuyy ahu Liiviluliineni 🖲

Fletcher's project results

SFA part	SFA part 4 🗕									
Parameter	Gr	ound w	vater	Sur	face wa	ater	Air			
	dQ	N	Kmax	dQ	N	Kmax	dQ	N	Kmax	
рН	0.099	13	1	0.099	13	1	n/a	n/a	n/a	
Turbidity, NFU/ Humidity, %	0.09	10	2	0.67	16	7	3.4	14	2	
Temperature, °C	0.2	8	1	0.99	12	1	1.09	9	2	
Level, cm/ Precipitation, mm	0.9	6	2	0.49	10	3	0.02	14	7	
TDS, g/L/ AQI	0.043	6	2	0.031	7	1	3.4	14	2	
Velocity, m/s/ Wind, m/s	n/a	n/a	n/a	0.004	11	6	3.9	17	1	

•The most reactive/sensible parameter for GW is pH; for the stream water it is turbidity; in atmosphere this is wind.

 The highest priority parameter of the Fletcher's creek is the groundwater TDS.

Average		ABS Average	
0.132	Flow_T	0.581	TDS_B
0.129	Velocity_T	0.580	TDS_I
0.123	Turb_T	0.580	TDS_T
0.123	Turb_I	0.579	Flow_B
0.121	Flow_I	0.572	Level_T
0.120	Velocity_I	0.572	Level_I
0.116	S/level_T	0.570	Velocity_B
0.097	Prec_T	0.568	Level_B
0.091	Prec_I	0.559	S/level_B
0.089	Prec_B	0.553	Air_B
0.082	S/level_I	0.550	Air_I
0.077	Wind_I	0.549	Air_T
0.076	Wind_T	0.547	Travel_T
0.075	Humid_B	0.546	pH_B
0.065	Humid_I	0.546	Travel_I
0.065	Humid_T	0.542	S/level_I
0.060	Turb_I	0.531	pH_B
0.059	Turb_T	0.527	Water T_B
0.057	pH_I	0.526	pH_I
0.056	Wind_B	0.524	Turb_B
0.056	pH_T	0.524	pH_T

Hydrological identification of urbanization using the SimpleBase Model

BFINDEX and the SimpleBase Model comparison

The model for 7Q2 predicting based on 38 stations of S. Ontario*:

available in the articlebelow(1)BFINDEX: $R^2 = 90\%$; SE = 0.43 (3 stations are excluded)SimpleBase: $R^2 = 92\%$;no station is excluded

A new equation of 7Q2 estimation for the whole area was developed based on the SimpleBase Delineation Model parameters:

 $7Q2 = 37*10^{-5*}$ Area^{0.91*}BFI^{2.65*}Kmax^{0.29*}Nd^{0.92} (2)

R² = 96%; no station excluded

Where

Kmax	– structural divider (amplitude);
Nd	 frequency of baseflow fluctuation

*"Regional Low Flow Frequency Relations for Central Ontario" by Robert K. McLean and W. Edgar Watt, Canadian Water Resources Journal, Vol. 30, No 3, 2005

Kind of conclusion

- The function of water to regulate atmospheric and surface temperature named Elasticity of Hydrosphere can be seen at any point and time
- It gives clear vision for sustainable water management
- The Separated Flux Analysis and the SimpleBase Delineation Model as a heard of it is a right tool for water functionality assessment of any parameter of hydrosphere at any point