"Ground water – climate" relationship revisited watershed approach

<u>Rimma Vedom</u>,

Hydrology and Environment, P.O. Box 52616, Mississauga ON

L5J 2E3, Phone: 905 823 6088, e-mail: rimma@sprint.ca

Anna Sergeyeva

Environmental Sciences' student, University of Western Ontario, London, ON N6A 3K7, e-mail: <u>aserguee@uwo.ca</u>

Julia Vedom

Environmental Studies's student, the University of Ottawa, 421 Laurier, apt.2, Ottawa, ONK1N 6R4, e-mail:v_julik@hotmail.com

Hydrology and Environment

All rights reserved ©

Objectives

To find:

What role does the interflow component of river flow play in climate – groundwater relationship? Whether does it increase the water table altitude (elevation) or fluctuation (amplitude)?

Why watershed?

Watershed is the physio-graphical unit of water cycle, the positive output of which is river flow Evapotranspiration **River flow is the only** tation parameter that characterizes the whole watershed and is measured in one point – river mouth Water quality and quantity regime in the specified reach of a river is the identity of the corresponding watershed area health as our blood pressure and content are the indicators of our health

Functions of water:

- 1. Transport media: physical and bio-chemical (as a solvent)
- 2. Environment habitat
- 3. Resource

EWBM

Equilibrium Water Balance Model is the tool for:

- Water balance (water cycle) components estimation: E = P - S - R + dG + dM
- Groundwater climate relationship assessment
- Reverse hydrological task: to disintegrate river runoff into quantitative components coming from different media

Approximations used in EWBM

- 1. Weight of each deposit was quantified according to its surface proportion in the watershed area
- 2. "Uniform area sink" is a river valley with linear H = f(I) relationship
- 3. Logarithmic H = f(I) relationship above Hlim
- 4. Watershed as a circle in terms of transmission of hydraulic pressure
- 5. The water table fluctuations define the fluctuations in vadose zone depths and its capacity (uniformed vadose zone)
- 6. The residual saturation S depends on the effective saturation S = $2.5Y/(1 + Y^{20})$
- 7. Uniformed vadose zone: no seasonal or monthly fluctuations in the vadose zone
- 8. dQs = 10dQb
- 9. No wind influence on snow density estimation
- 10. No anthropogenic impact is taken into account (urbanization, lawn watering, STP, WG, WS)
- 11. Available meteostation is representative

Approximation 1:

- $dG = dH^*Y^*1000$
- In estimation of average storativity, effective porosity or specific yield (Y), weight of each deposit group on a watershed was defined according to its area on the watershed surface

Hydrology and Environment

Approximations 2 and 3

2. Whole watershed is divided into two parts characterized by different hydraulic conductivity:

> a river valley (the lowes "Uniform area sink") with linear H = f(I)relationship, and the rest of watershed with the logarithmic H =f(I) relationship above Hlim

3. The division

Hydrology and Environment

All rights reserved ©

For estimation of average water table head above the river level the distance between the reach and the watershed boarder is considered as a radius (r) of a circle, which area is equal to the drainage area of the watershed

 $H = Hlim + LN (1 + I^*r/K)$

In terms of hydraulic pressure conductivity it is understandable

Hydrology and Environment

Approximations 5, 6 and 7

- 5. The water table fluctuations define the fluctuations in vadose zone depths and its capacity
- 6. The residual saturation S depends on the effective saturation

 $S = 2.5Y/(1 + Y^{*}20)$

7. Uniformed vadose zone: no seasonal or monthly fluctuations in the vadose zone

In SimpleBase model dQ_i = 10dQ_b

 $Q_b = Q_o + dQ_b^* t$ $Q_i = SdQ_i$ $Q_s = Q_t - Q_b - Q_i$

Hydrology and Environment

All rights reserved ©

dQi = 10dQb

Whatever geology and size of a watershed is, the filtration capacity of the alluvial deposits of the river valley and flood plain will overcome the background by 10 times

Hydrology and Environment

• Representativeness of a single meteostation

Parameters	Etobicoke C	reek (HC030)	Spencer Creek (HB023)	
	base	base+inter	base	base+inter
Periods	1990	-2000	1990-2000	
F, km ²	204	204	132	132
Y	0.0335	0.0335	0.1570	0.1570
K, m/day	0.080	0.080	0.586	0.586
r	11.40	11.40	9.17	9.17
S	0.050	0.050	0.095	0.095
Meteorological data	1 station: Pie	erson Airport	1 station: Hamilton Airport	
Precipitation (P)	782	782	883	883
Snow cover (water content), mm	22 (R ² = 0.9)	22 (R ² = 0.9)	24 (R ² = 0.93)	24 (R ² = 0.93)
Air temperature (T)	8.13	8.13	7.83	7.83
Total runoff, mm	369		391*	
dQ (limit of daily increase), m ³ /s	0.27	2.7	0.099	0.99
Baseflow, mm	154		263	
Total groundflow, mm		256		349
Anthropogenic factors affecting geological and hydrological factors accounted	67% of urbanization and 100% of a forest-free, STP, WS, WG, lawn Hydrology and Environment watering: not accounted		Urbanization, agricultural and recreational activities, STP, WS, All rights reserved © WG: not accounted	

Results

Daramatore	Etobicoke Cr	eek (HC030)	Spencer Creek (HB023)	
Farameters	base	base+inter	base	base+inter
Hlim, m above a creek level	2.09	2.71	0	0.01
E, mm	413	413	495	495
Rt (correlation with air temperature)	0.243	0.235	0.276	0.279
Rp (correlation with precipitation)	0.854	0.855	0.777	0.775
Hmin, m	3.04	3.04	0.00	0.00
Hmax, m	4.20	4.20	0.06	0.09
dHd, m (monthly decreasing)	-1.06	-1.06	-0.03	-0.05
dHi, m (monthly increasing)	0.80	0.80	0.03	0.06

Conclusions

- The temporary component of groundwater discharge into a river, interflow, increases the permanent water table altitude. The increase is more pronounced for a watershed with the fine texture of surface deposits. For a watershed with coarse deposits the altitude increase is less pronounced, but amplitude of water table fluctuation is increased as well.
- The model based on minimal data can be pretty sensitive to changes in groundflow discharge to a river in spite of all the approximations done.
- To obtain more reliable evapotranspiration, it is necessary to add the water use data, topographical elements (average watershed height, average river height) and then change the vadose zone profile.